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Vapor flow analysis of an axially rotating heat pipe 
A. FAGHRI, S. GOGINENI and S. THOMAS 

Department of Mechanical and Materials Engineering, Wright State University, 
Dayton, OH 45435 U.S.A. 

Abstract-The vapor flow in an axially rotating heat pipe has been numerically analyzed using a two- 
dimensional axisymmctric model in cylindrical coordinates. A parametric study was conducted for radial 
Reynolds numbers ol”0.01.4.0. and 20.0. and rotational speeds ranging from 0 to 3800 r.p.m. The numerical 
results indicate that the pressure and the axial. radial. and tangential velocities are significantly affected by 
the rotational speed and the radial Reynolds number. In comparison to non-rotating heat pipes, the radial 
pressure distribution is no longer uniform. Also, above a certain rotational speed, Row reversal occurs near 
the centerline of the heat pipe. The shear stress components in the axial and tangential directions at the 
inner pipe wall increase with the evaporation rate and the rotational speed. The magnitude of the shear 
stress components are highest in the condenser section. The results of this study will be beneficial in the 

prediction of the performance of axially rotating heat pipes. 

INTRODUCTION 

HEAT PIPES transport heat energy over large distances 
with relatively low temperature drops and no external 
power requirements [I]. A heat pipe is a closed con- 
tainer, within which is a thin, liquid-saturated wick 
structure attached to the pipe wall. Heat transfer 
occurs by evaporation of the fluid from the wick struc- 
ture in the evaporator section. The vapor travels to 
the condenser section due to a pressure gradient in the 
vapor. The vapor then condenses onto the wick in the 
condenser. releasing the latent heat of vaporization to 
the ultimate heat sink. The condensate returns to the 
evaporator by capillary forces within the wick struc- 
ture to repeat the process. Wickless rotating heat pipes 
have been studied where the heat pipe rotates about 

its longitudinal axis. The rotating heat pipe concept 
was formulated originally by Gray [2] as an improved 
version of the conventional heat pipe for specific appli- 
cations where gravity and acceleration limitations 
must be overcome. The rotating heat pipe does not 
contain a wick structure, but relies solely on cen- 
trifugal forces to transport the liquid from the con- 
denser to the evaporator. The rotating heat pipe is of 
significant interest for applications such as cooling 
electric motors, turbine blades, machine tools, bear- 
ings and other rotating mechanical devices [3-51. 

Faghri and Parvani [6] and Chen and Faghri [7] 
numerically solved the complete two-dimensional, 
laminar, steady conservation of mass, momentum, 
and energy equations with and without the effect of 
the wall and the wick for conventional and annular 
nonrotating heat pipes. 

Previous investigations concerning axially rotating 
heat pipes generally analyzed the condensation within 
the condenser section using the Nusselt analysis. 
Daniels and Al-Jumaily [8] analyzed the condensate 
flow in the condenser section of an axially rotating 

heat pipe with a slight internal taper. The analysis 
originally derived by Nusselt [9] for the gravity-driven 
laminar flow of condensate of pure vapors was fol- 
lowed to obtain the heat transfer rate. Since the fric- 
tion coefficient at the vapor-liquid interface was 
unknown, it was assumed to be f  = l6/Re or 
0.0791/Re"~'5 for laminar or turbulent vapor flow. It 
was found that the performance of rotating heat pipes 
could be improved by increasing the taper angle, the 
length of the condenser, and the volume of working 
fluid within the pipe. 

Marto [IO] performed an analysis similar to that of 
Daniels and Al-Jumaily [8] for the heat transfer within 
the condenser of an axially rotating heat pipe. The 
analysis by Marto included the effect of the vapor 
pressure drop in the condenser, but neglected the 
momentum effect of the condensing vapor when con- 
sidering the interfacial shear stress. Again, the friction 
factor had to be assumed as was done by Daniels and 
Al-Jumaily. Marto concluded that the heat transfer 
rate increased approximately as the square root of the 
rotational speed, when the resistances of the wall and 
the outside convection were neglected. Marto also 
concluded that the performance of rotating heat pipes 
could be improved by using thin-walled condensers 
made of high conductivity materials. 

Daniels and AI-Baharnah [I I] analytically pre- 
dicted the condenser wall temperature profile, includ- 
ing the effects of the concentration of noncondensible 
gas, the type of working fluid, the condenser wall 
material, and the cooling medium. The conservation 
equations for mass, axial and radial momentum, and 
energy in the condensate film were derived. In the 
analysis, the velocity gradient in the circumferential 
direction and the shear force at the vapor-liquid film 
interface were neglected. Results of the analysis were 
compared to experimental data with good agreement. 

Salinas and Marto [12] employed a two-dimen- 
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coefficient of friction in the I’-: 
direction, Zr,,,,/p W’ 
coefficient of friction in the r-0 direction, 
25,,,,wlP UE 
inner diameter of the rotating heat pipe 

[ml 
heat of vaporization [J kg- ‘1 
length of the rotating heat pipe [m] 
length of the adiabatic section [m] 
length of the condenser section [m] 
length of the evaporator section [m] 
rotational speed [r.p.m.] 

l’+ normalized radial velocity. L!/ V,, 
II’ axial component of velocity [m so ‘1 
W mean axial velocity in the adiabatic 

section [m so ‘1 
W>,; mean axial velocity at any z location 

[m so ‘1 
w+ normalized axial velocity, IV/W,,~ 
: axial coordinate [m] 
-* dimensionless axial distance, z/R 
z+ normalized axial distance. z/L. 

pressure [N m ‘1 
vapor pressure at the evaporator end cap 
[N m-‘1 
dimensionless pressure, (p-p,,)/p W’ 
local heat rate per unit length [W m- ‘1 
radial coordinate [m] 
inner radius of the rotating heat pipe [m] 
normalized radial distance, r/R 
axial Reynolds number, WD/v 
radial Reynolds number, V, R/v 
rotational Reynolds number, U,.D/v 
Rossby number, V,/wR 

Greek symbols 

P 
T,Z.W 

T T0.W 

w 

swirl ratio, l/,/W 
tangential coordinate [rad] 
absolute viscosity [kg m ’ s- 
kinematic viscosity [m’ s- ‘1 
density [kg rn- ‘1 
shear stress at the wall in the 
direction [N m- ‘1 
shear stress at the wall in the 
direction [N m- ‘1 
angular velocity [rad so ‘I. 

tangential component of velocity [m s- ‘1 
tangential velocity of the inner pipe wall, 
Rco [m s- ‘1 Subscripts 
normalized tangential velocity, u/U,, a adiabatic section 
radial component of velocity [m s- ‘1 C condenser section 
radial blowing or suction velocity at the e evaporator section 
inner radius of the pipe [m s- ‘1 W at the wall. 

‘I 

r-z 

r-0 

sional numerical model to analyze the conjugate heat 
conduction within an axially rotating heat pipe. Inter- 
nal triangular fins, which enhance the heat transfer 
coefficient, were analyzed using the finite-element 
method of solution. The local condensate velocity and 
thickness in the troughs between the fins were derived 
using a Nusselt-type analysis, where the interfacial 
shear between the vapor and the liquid was neglected. 
The rotational speed was varied from 1000 to 15000 
r.p.m., the number of fins varied from I to 400, and 
three heat transfer coefficients, 5.70,28.4, and 284 kW 
m-* K- ‘, were specified at the outer radius of the 
pipe. It was determined that two-dimensional heat 
conduction affects the local heat flux distribution 
within the fins, condensate, and the wall. The authors 
state that an optimum fin configuration can be derived 
for a given set of operating conditions, working fluid, 
wall material, and outside heat rejection method. 

All of the previous investigations of rotating heat 
pipes used a Nusselt-type analysis in the condenser 
section, where either the friction coefficient at the 
vapor-liquid interface was estimated empirically, or 
it was assumed to be negligible. This assumption may 

be invalid for small-diameter heat pipes operating 
under large heat loads [ 121. In these cases, it is impor- 
tant that the shear stress profiles along the heat pipe 
be known. Also, the heat pipe should be solved as a 
single-domain problem, instead of considering only 
the condenser section. To the knowledge of the 
authors, there is no study available related to the 
vapor flow in axially rotating heat pipes. Therefore, 
the objective of the present study is to analyze the 
vapor flow within a heat pipe rotating about its longi- 
tudinal axis as a single-domain problem by numeri- 
cally solving the two-dimensional axisymmetric 
differential equations conserving mass and momen- 
tum. The effects of the radial Reynolds number and 
the rotational speed are determined by a parametric 
study. Pressure, velocity, and shear stress profiles 
along the entire length of the rotating heat pipe are 
given to understand and quantify the fundamental 
hydrodynamic phenomena occurring within the vapor 
flow of the rotating heat pipe. The information 
obtained from this study will be beneficial in pre- 
dicting the heat transfer characteristics of axially 
rotating heat pipes, since the shear stress at the vapor- 
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liquid interface will be known. This analysis will pro- 
vide the needed information so that the analytical 
models mentioned above can be improved. 

MATHEMATICAL FORMULATION 

The problem under consideration is a circular cross 
section heat pipe with sealed ends rotating about its 
longitudinal axis with a constant angular velocity try, 
as shown in Fig. I. The lengths of the evaporator, 
adiabatic, and condenser sections are L, = 0.2 m. 
L, = 0.6 m, and L, = 0.2 m. The inner diameter of the 
heat pipe studied is D = 0.02 m. The working fluid is 
water vapor at 100 C. Evaporation and condensation 
within the heat pipe are modeled as blowing and suc- 
tion at the inner wall of the pipe. The evaporation and 
condensation are considered to be uniform around 
the circumference of the pipe and along the lengths of 
the evaporator and condenser sections. Therefore. the 
two-dimensional axisymmetric cylindrical coordinate 
system is used. It is assumed that the fluid properties 
are constant, and the flow is laminar, steady. and 
incompressible. The gravitational body force and vis- 
cous dissipation are assumed to be negligible. The 
differential equations conserving mass and momen- 
tum for this case are [ 131 : 

Mass : 

r direction momentum : 

> 
aP =-- al 

0 direction momentum : 

: direction momentum : 

p(Ll; +2!) = -g 

At the inner wall of the heat pipe (r = R), the no- 
slip condition for the axial and tangential velocities is 
in effect 

u(R. z) = U, = Rw (5) 

w(R, z) = 0. (6) 

Evaporation and condensation at the inner wall of the 
heat pipe are modeled as uniform blowing and suction 

P(R, :) = 

1 

- v,. O<:<L, (Evaporator) 

0, L, < : < L,+ L, (Adiabatic) 

VW, L,+ L,% ,< : < L (Condenser). 

The blowing and suction velocities are related 
local heat rate per unit length as : 

(74 
(7b) 
(7c) 

to the 

(8) 

At the end caps of the heat pipe (Z = 0, L). the radial 
and axial velocities are zero due to the no-slip 
condition, while the tangential velocity varies linearly 
across the radius 

u(r, 0) = u(r. L) = rw (9) 

L’(I., 0) = L’(I., L) = 0 (10) 

w(r, 0) = w(r, L) = 0. (11) 

At the centerline of the pipe (r = 0), the radial and 
tangential velocities, and the radial gradients of the 
pressure and axial velocity are zero 

L--==‘;i’ 
FIG. I. The axially rotating heat pipe and coordinate system. 

(12) 
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The pressure at the center of the evaporator end cap 
is set to a constant value (reference pressure) 

Pa 0) = PO. (13) 

The shear stresses at the inner wall of the heat pipe 
are [13]: 

(14) 

(15) 

The solutions of the conservation equations and 
boundary conditions given above are presented in 
terms of the following dimensionless dependent vari- 
ables : 

The dimensionless independent variables and par- 
ameters are : 

r+ -‘- - -+ =I. 
R’ - L’ 

Re,=V,R, 
I’ 

Ro=wV;;. 

NUMERICAL METHODOLOGY 

The solutions of the elliptic dimensional mass and 
momentum conservation equations (l)-(4) with the 
boundary conditions, (5)-(7), (9)-( I3), were obtained 
using the control volume finite difference approach 
described by Patankar [l4, 151. The solution pro- 
cedure is based on a line-by-line iteration method 
in the axial direction, and the Jacobi point-by-point 
procedure in the radial direction. The SIMPLEST 
method is employed for the momentum equations 
[l6]. The pressure field is solved by the whole-field 
pressure correction algorithm derived by Markatos ef 
al. [l7]. The pressure field is first assumed and then 
the velocities are solved. The pressure correction equa- 
tion is then solved using the mass errors that have 
been calculated during the sweep, and the other vari- 
ables are updated accordingly. A new sweep will start 
until convergence is attained. Convergence ofthe solu- 
tions is ensured in two ways : 

I. The sum of the absolute value of the residuals 
should decrease as the sweep number increases. 

2. The spot values monitored during the iterations 
should approach constant values as the sweep number 
increases. 

Sweep independence was ensured by monitoring 
the dependent variables at a location of maximum 

change as the number of sweeps increased until the 
solutions did not change by more than 0. I %, and the 
residuals of each equation was less than IO-‘. Grid 
independence was checked by systematically varying 
the number of cells in the r and : directions until 
an invariant solution was obtained. A change in the 
number of r-z cells from 40 x 80 to 60 x 120 resulted 
in a change in the dependent variables of less than 
3%, so 40 x 80 uniform cells were used in all of the 
runs. 

RESULTS AND DISCUSSION 

A parametric study of the effects of radial Reynolds 
number and rotational speed on the vapor flow within 
an axially rotating heat pipe has been completed. Press- 
ure, velocity, and shear stress profiles are presented 
for radial Reynolds numbers of 0.01. 4.0. and 20.0, 
and rotational speeds from 0 to 2800 r.p.m. The validity 
of the numerical code was verified by comparison with 
the numerical results of previous researchers. First, 
the laminar vapor pressure distribution of a stationary 
heat pipe (Re, = 0.01. N = 0) was compared to the 
analytical solution given by Faghri and Parvani [6]. 
The code was then changed to simulate developing 
laminar flow from a stationary to a rotating tube, so 
that the results of Lavan e/al. [ 181 (Re = 20. I- = 5.22) 

could be reproduced. Finally, the numerical code was 
run for the case of fully-developed flow in a rotating 
pipe (Reich et al. [ 191; Re = 1000). In all three cases, 
the results of the present numerical code were within 
I .O% of the previous results. 

Figures 224 present the dimensionless axial, radial, 
and tangential velocities across the radius for the full 
range of rotational speed at three different axial 
locations for the case of Re, = 0.01. In these figures, 
(a), (b), and (c) correspond to :+ = 0.1, 0.5, and 0.9, 
which are at the middle of the evaporator, adiabatic, 
and condenser sections. At N = 0 (stationary heat 
pipe), the fully-developed parabolic axial velocity 
found by Faghri and Parvani [6] is shown in Fig. 2 in 
all sections of the heat pipe. However, this profile 
changes significantly as the rotational speed increases. 
The centrifugal force tends to compress the fluid 
toward the pipe wall (r+ = I). so that the maximum 
velocity occurs away from the centerline, thus creating 
an annular main flow. At rotational speeds above 
N = 1400 r.p.m., the axial velocity near the centerline 
becomes negative, indicating a central core of reversed 
flow down the length of the heat pipe. This type of 
flow reversal was reported by Lavan et al. [ 181 for the 
case of developing flow from a rotating tube to a 
stationary tube. In the present case, flow reversal 
occurs due to the decrease of the pressure near the 
center of the heat pipe, and the increase in the momen- 
tum of the fluid from the angular velocity. The 
momentum of the annular main flow is such that the 
fluid is not completely removed by the suction in the 
condenser, so that the annular flow turns toward the 
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centerline in the condenser and becomes the central 
reversed flow. 

Figure 3 presents the radial velocity down the length 
of the heat pipe. In Fig. 3(a), u+ is negative in the 
evaporator at the pipe wall, indicating that fluid is 
being blown into the pipe. In Fig. 3(b), the velocity at 
the wall is zero, due to the adiabatic condition. In Fig. 
3(c), the radial velocity at the wall is positive, showing 
suction from the pipe. At high rotational speeds, the 
radial velocity becomes positive close to the centerline 
of the pipe in the evaporator section, as shown in 
Fig. 3(a). This means that the fluid from the central 
reversed flow turns toward the annular main flow in 
the evaporator section. Similarly, the radial velocity 
near the centerline becomes negative in the condenser 
section, showing the flow turns from the annular main 
flow to the central reversed flow in the condenser. 
Therefore, the centrifugal force causes the fluid to 
circulate within the pipe such that part of the fluid 
passes by the condenser section without being drawn 
out. 

Figure 4 presents the tangential velocity across the 
radius at different locations, which was nearly linear 
for the entire range of the rotational speed. The 
dimensional pressure distribution across the radius 
for Re, = 0.01 is shown in Fig. 5. At low rotational 
speeds, the pressure is constant across the radius, 
as was found by Faghri and Parvani [6]. As the 
rotational speed increases, the pressure increases sig- 
nificantly across the radius due to the centrifugal 
force. In fact, for the case of Re, = 0.01 with high 
rotational speeds, the pressure variation across the 
radius is several orders of magnitude higher than that 
along the axial length of the heat pipe. Figure 6(a) 
presents the dimensionless axial pressure variation at 
the centerline for Re, = 0.0 I. At low rotational speeds, 
the direction of the flow is from the evaporator to 
the condenser. As the rotational speed increases, the 
pressure in the condenser becomes higher than that in 
the adiabatic and evaporator sections, indicating a 
reversal of flow near the centerline. Similar profiles 
occur for Re, = 4.0 and 20.0, as shown in Figs. 6(b) 
and (c). In Fig. 6(c), for N = 700 r.p.m., the centerline 
pressure is negative from 0 < Z+ < 0.35 and positive 
from 0.35 < z+ < I. This means that the central 
reversed flow is present only in the region of 
0.35 Q z+ < I. As the rotational speed increases, the 
extent of the central reversed flow increases until it 
fills the heat pipe. 

The normalized axial velocity for Re, = 4.0 is given 
in Fig. 7. Again, the reversed flow near the centerline 
is found in this case for N > 1400 r.p.m. at all axial 
locations down the length of the pipe. The radial 
velocity for Re, = 4.0, shown in Fig. 8, is similar to 
that of Re, = 0.01 (Fig. 3). The normalized tangential 
velocity for Re, = 4.0 no longer varies linearly across 
the radius, as shown in Fig. 9. Near the pipe wall, the 
tangential velocity is not significantly affected by the 
rotational speed since the viscous effects of the wall 
dominate in that area. Away from the wall, however, 

the rotational speed dramatically affects the tangential 
velocity profile. The u+ velocity in the evaporator 
section reaches a maximum which is greater than the 
velocity of the rotating wall, which indicates an 
increase in swirl in the evaporator section due to the 
blowing at the pipe wall. Alternately, the suction 
velocity in the condenser section decreases swirl. 

Figure 10 presents the normalized axial velocity 
for Re, = 20.0. Similar behaviors are seen as before, 
except that at low rotational speeds, the axial velocity 
reverses in the condenser section near the pipe wall. 
This phenomenon was also seen by Faghri and Parvani 
[6]. As the rotational speed increases, the momentum 
of the annular core overcomes the reversed flow 
at the wall, which then turns in the positive z direction. 
By comparing IV+ for Re, = 0.01,4.0, and 20.0, it can 
be seen that the maximum in the axial velocity at 
N = 2800 r.p.m. moves away from the pipe wall 
(r’ = 1) in the evaporator section as the radial 
Reynolds number increases. In the condenser section, 
the maximum moves toward the pipe wall as Re, 
increases. This means that the influence of the blowing 
or suction velocity at the wall changes the axial vel- 
ocity profile more at higher radial Reynolds numbers. 
The normalized radial and tangential velocities are 
given in Figs. I I and 12 for Re, = 20.0. 

Figure I3 presents the coefficient of friction at the 
wall in the I’+ plane along the heat pipe length for 
Re, = 0.01, 4.0, and 20.0. The results in the adiabatic 
section for the case of no rotation was compared to the 
Hagen-Poiseuille laminar friction law, Cr.,- = 16/Re, 
with agreement to within 1.0%. For Re, = 0.01. 
Fig. 13(a), the magnitude of the friction coefficient 
increases in the evaporator section for a given 
rotational speed due to the increase in the axial vel- 
ocity by mass injection. The friction coefficient also 
increases with rotational speed in the evaporator sec- 
tion due to the change in the axial velocity profile, as 
shown in Fig. 2(a). Since the gradient of the axial 
velocity at the wall becomes steeper with an increase 
in the rotational speed, the shear stress also increases. 
Similarly, in the condenser section, the friction co- 
efficient decreases due to mass extraction for a given 
rotational speed, and increases at a particular location 
with the rotational speed. 

Figure 13(a) also shows that a sudden discontinuity 
occurs at the end of the evaporator section when the 
pipe rotates because of the discontinuous blowing 
velocity boundary condition at the pipe wall. The 
magnitude of .the friction coefficient decreases mono- 
tonically until the middle of the adiabatic section, 
where it again increases. The decrease in the magni- 
tude of the friction coefficient is similar to that found 
by Imao et al. [20] for the hydrodynamic development 
length in a rotating pipe. Therefore, the decrease in 
Cr,rZ is due to the development of the axial profile in 
the adiabatic section. For low rotational speeds, Cr.,; 
approaches the constant value of that for no rotation, 
which is expected as the axial velocity profile becomes 
fully developed. Cr.,Z increases between the middle of 
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the adiabatic section and the beginning of the con- 
denser section. This behavior is more pronounced as 
the rotational speed increases. This phenomenon is 
caused by the influence of the downstream condenser 
section propagating upstream, which begins to change 
the axial velocity profile in the adiabatic section. If  
the adiabatic section was longer, Cr.,.- for N = 2800 
r.p.m. would approach the fully-developed value more 
closely before increasing at the junction of the adia- 
batic and condenser sections. This shows that the 
downstream effects must be accounted for in the solu- 
tion of this problem. Chen and Faghri [7] and Tien 
and Rohani [21] showed that for a stationary heat 
pipe with low radial Reynolds numbers, the partially 
parabolic conservation equations sufficiently rep- 
resented the physics of the problem in comparison 
to the elliptic equations. For the rotating heat pipe, 
however, the fully elliptic conservation equations 
must be solved, even for radial Reynolds numbers as 
low as Re, = 0.01. 

As the radial Reynolds number increases, as seen 
in Figs. 13(b) and (c), Cr.,= is not affected as greatly 
in the evaporator and adiabatic sections. since the 
blowing velocity becomes larger in relation to the 
tangential velocity of the wall (Ro increases). Also in 
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FIG. 14. Tangential coefficient of friction variation along the 
length of the heat pipe for: (a) Re, = 0.01 ; (b) Re, = 4.0; 

(c) Re, = 20.0. 

Figs. 13(b) and (c), the coefficient of friction changes 
sign in the condenser section due to the flow reversal 
near the pipe wall at low rotational speeds. This is 
eliminated at higher speeds due to the momentum of 
the annular flow overcoming that of the reversed flow 
at the wall, as shown in Fig. IO(c). Clrrr decreases as 
Re, increases because Cr,rZ is calculated by dividing the 
shear stress by the square of the mean axial velocity 
in the adiabatic section, which increases with radial 
Reynolds number. The magnitude of the r-z com- 
ponent of the shear stress is greatest in the condenser 
section in all cases. 

Figure 14 presents the coefficient of friction at 
the wall in the r-0 plane, C,,,,. In Fig. 14(a) (Re, = 
0.01) the coefficient of friction decreases in all sec- 
tions of the rotating heat pipe as the rotational speed 
increases because T,,) is nondimensionalized by U,. In 
Fig. 14(b), Cc,,o becomes negative in the evaporator 
and adiabatic sections due to the change in the slope 
of TV+ in that region (see Figs. 9(a) and (b)). In 
the condenser section, the coefficient of friction is 
positive, and its magnitude is greatest in this section 
in all cases. 

CONCLUSIONS 

A parametric numerical analysis of axially rotating 
heat pipes has been carried out, with the following 
conclusions : 

1. Rotation significantly changes the velocity pro- 
files of the vapor flow within the heat pipe. A reversal 
of flow near the centerline of the pipe occurs due to 
the reduced pressure at that location. To capture this 
effect, the elliptic version of the conservation equa- 
tions must be solved, instead ofjust the fully parabolic 
equations. 

2. Unlike stationary heat pipes, the radial press- 
ure distribution of the rotating heat pipe is no longer 
uniform, but more closely resembles a parabolic pro- 
file. 

3. The flow reversal normally seen in stationary 
heat pipes at the wall for large heat rates (Re, > 2) is 
eliminated at high rotational speeds due to the 
increased momentum of the annular main flow. 

4. The tangential velocity is affected by the blowing 
or suction velocities at the pipe wall in the evaporator 
and condenser sections. This increases the swirl in the 
evaporator and decreases it in the condenser section. 

5. The coefficient of friction in the r-z direction 
is significantly affected by rotation when the radial 
Reynolds number is low, because the effects of the 
condenser section propagate upstream. In all cases, 
the magnitudes of C,, and Cl.,O are greatest in the 
condenser section. 

6. The shear stress components at the wall, T,,,,  and 
7 r0.w increase with both rotational speed and radial 
Reynolds number. Therefore, neglecting the shear 
stress at the vapor-liquid interface of an axially rotat- 
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ing heat pipe may induce significant errors in a 
Nussclt-type analysis. 
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